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INTRODUCTION

Bioacoustic monitoring of wildlife based on autonomous 
recording units has seen remarkable technical progress 
in the last decade, both in aquatic (Sousa-Lima et al. 
2013) and in terrestrial (Fristrup and Mennitt 2012) 
environments. Such progress has made it easier to obtain 
presence/absence data for species with conspicuous 
vocalizations like some insects, anurans, and a large 
variety of birds. Autonomous recording combines four 
features that make it a particularly cost-efficient sampling 
technique: the possibility of sampling in all directions 
from one observation point; relatively high detection 
probability when visibility is low; the possibility of 
simultaneously sampling many sites with moderate to 
low effort; and, last but not least, a permanent record 
of animal signals that can be easily reviewed to correct 
doubtful identifications. In spite of its convenient features, 
autonomous recording is still liable to errors, like all field-
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errors. The 20 participants who took the quiz showed substantial variation in their ability to identify species correctly. Fourteen 
species were correctly identified more often than expected at random, while only one was misidentified more often than expected 
at random. The observed mean distance between confused species was smaller than all of the mean distances from the randomized, 
null-model matrices, indicating that confusions are more frequent between closely related species than between distant ones. 
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sampling techniques. Acoustic recordings may easily miss 
species that are present at a site (false negatives), or they 
may lead to identification errors, which can result in the 
mistaken record of a species that is actually not present at 
a site (false positives). 

There is a large body of literature offering modeling 
solutions for estimating biological parameters based on 
data with false-negative errors (MacKenzie et al. 2002). 
False positive errors, on the other hand, have received 
relatively less attention, and the analytical solutions to 
deal with them are in an earlier stage of development 
(Miller et al. 2013). Nonetheless, the relevance of false 
positives is evident, especially in site-occupancy surveys, 
where they can lead to measurable errors in occupancy 
estimates even when they represent as little as 1% of 
detections (McClintock et al. 2010). Occupancy models 
that take false positive errors into account, in cases where 
some amount of identification error is expected, produce 
substantially different, less biased estimates of occupancy 
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than those models that ignore false positives (Miller et 
al. 2011).

Perhaps the greatest source of false positive 
sampling errors in bioacoustic data is the great similarity 
between many species' sounds (McClintock et al. 
2010). This similarity, compounded by other factors 
such as lack of visual information and various types of 
background noise, results in some unavoidable amount 
of identification error (Farmer et al. 2012). There are 
many possible causes for false-positive errors, but even 
when causes are unknown, it is possible to improve site-
occupancy and species distribution inferences if we have 
some notion of which species are easier or harder to 
identify (Miller et al. 2011). Knowledge of how easy it is 
to mistake one species for another can also be useful in 
novel probabilistic methods of taxonomic classification 
(Somervuo et al. 2016).

In the present study, we asked a group of experts to 
identify vocalizations of 41 Amazon Forest bird species, 
and used their answers to quantify which species were 
most likely to be mistakenly identified. In doing this, we 
addressed three specific questions: a) To what extent are 
experts capable of correctly identifying bird sounds? b) 
Which species are more difficult to identify? and finally, 
c) Is the taxonomic distance between two species related 
to the probability of mistaking one of those species for 
the other? 

We based our survey of expert identifications in 
an on-line quiz which presented users with recordings 
of bird species occurring in the Biological Dynamics 
of Forest Fragments Project (BDFFP) study area, on 
the southwest end of the Guiana shield region, 80 km 
north of the city of Manaus, Brazil (2.4°S; 59.9°W). This 
area is particularly fit for a study about false positives in 
bioacoustic sampling because it has a rich avifauna (Cohn-
Haft et al. 1997); it has a very good reference collection of 
bird vocalizations (Naka et al. 2008); and its bird fauna is 
relatively well known, compared to other regions of the 
Amazon. The combination of these three factors facilitates 
the emergence of a fairly large community of experts 
who can identify regional birds from their vocalizations. 
Although the study area has about 400 bird species, this 
study will focus on a small subset of species to construct a 
bird identification quiz that represents a meaningful part 
of the avifauna but is short enough to engage a reasonable 
number of collaborating experts.

METHODS

Construction of a vocalization library

The first step of this study was to assemble a vocalization 
library with species from the family Thamnophilidae 

(antbirds) and subfamily Dendrocolaptinae 
(woodcreepers, family Dendrocolaptidae) occurring 
in the BDFFP area. We chose these two groups for 
four reasons: i) they are almost entirely represented by 
understory birds, and thus easier to hear and record; 
ii) most of the species in these groups are common in 
Amazonia, very vocal, and well known; iii) their songs 
are rather simple and stereotypical when compared 
to oscine passerines and iv) they have relatively well-
resolved phylogenies (Irestedt et al. 2004, Moyle et al. 
2009). The latter attribute allows us to ask if taxonomic 
distance between two given species bears any relationship 
with the probability of mistaking one of those species for 
the other.

The recordings used in this study were obtained 
from 1) the Ferraz Lab autonomous recordings database, 
2) the Xeno-Canto Foundation on-line database, and 
3) from the commercially available CD “voices of the 
Brazilian Amazon” (Naka et al. 2008). To minimize 
sound quality differences within the quiz, we individually 
edited recordings using software Adobe Audition 5.5 
to standardize duration, background noise and signal 
amplitude. By doing this, we aimed to ensure that 
variations in identification success were determined 
mostly by variation in characteristics of the vocalizations. 
Nevertheless, in order to present quiz users with an aural 
experience that was somewhat faithful to that experienced 
in the field, we did not attempt to completely eliminate 
background noise and other imperfections. In the end, 
our quiz library contained 82 vocalizations from 41 
species (13 woodcreepers and 28 antbirds), with two 
different vocalizations for each species. One recording 
of Thamnophilus punctatus was removed from the study 
after the quiz application because six observers raised 
doubts about the possibility of correctly identifying the 
vocalization.

On-line quiz

In order to quantify identification errors, we designed 
an on-line quiz using the software Wondershare Quiz 
Creator. The quiz consisted of 41 questions, selected 
at random from a pool of 82. Each question presented 
an audio recording and a sonogram, which illustrate 
the vocalization of one focal species. To answer each 
question, experts had to listen to the recording and fill 
a blank space with the name of the species that they 
believed to be featured in the recording. Since the 41 
questions in every test are picked at random, the number 
of questions per species and the number of species heard 
in a single test are subject to some variation. However, 
random selection of questions was done without 
replacement, thus preventing any species from being 
heard more than twice in one test. To ensure that the 
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quiz was done in one take, each user had a time limit of 
30 minutes to finish answering all the questions. Since 
the quiz software does not check for typing mistakes, 
we developed a script in the R package (R Development 
Core Team 2013) that compares expert answers to a 
list of species from the study area and corrects typing 
mistakes. Corrections were applied only in cases where 
the given answer was five or less characters away from 
one species on the list. Answers that were more than 
five characters away from every species in the list were 
flagged for manual verification. 

Quiz participants

The search for quiz participants followed an e-mail thread 
that started with a collaboration request, instructions to 
complete the on-line quiz, and a brief description of 
the study goals. The request was sent to a list of thirty 
experts, defined here as individuals with professional or 
graduate-level experience in identifying Amazon Forest 
birds by their vocalizations. Everyone on this list was 
personally known to us as a competent field researcher or 
recommended to us by ornithologists with more than 25 
years of experience identifying Amazon bird vocalizations. 
We had a total of 20 quiz takers, which inevitably had 
variable skills in identifying the study species: two were 
professional field guides, nine were graduate students, and 
nine were professional ornithologists. Some participants 
had more experience in visual than aural identification 
while others knew Amazon bird vocalizations well but 
not necessarily the vocalizations from the study area. 
These sources of variability in observation skill are 
unavoidable and contribute to the misidentification that 
we want to study.

Binomial analyses of identification data

We measured the performance of each expert in       
identifying vocalizations by the proportion of quiz 
questions that he or she answered correctly. To sort 
performances between exceptionally good, average, or 
exceptionally bad, we performed a binomial test. The test is 
based on the null hypothesis of equal probability of getting 
answers right or wrong. The null scenario is equivalent to 
assuming that, in each question, the participant tosses an 
unbiased coin that has a right answer on one side and a 
wrong answer on the other. The binomial test quantifies 
the probability P of such participant obtaining a result 
just as extreme, or more extreme than the one obtained in 
the quiz. “More extreme” means “with a greater number 
of correct answers”, or “with a greater number of wrong 
answers”, depending on which end of the distribution the 
participant falls. We obtain P from an implementation of 
the Binomial distribution formula in the R core Package 

(R Development Core Team 2013), and apply a two-
tailed approach to testing the null hypothesis. When 
the probability of getting a number of correct answers 
greater than or equal to the observed was ≤ 0.025 (i.e. 
performance lies in the upper tail of our distribution), 
we considered that performance exceptionally good. 
On the other hand, when the probability of getting a 
number of correct answers smaller than or equal to the 
observed was ≤ 0.025 (i.e. performance lies in the lower 
tail of our distribution), we considered the performance 
exceptionally bad and excluded the answers of the observer 
from subsequent steps in the analysis. Our decision to 
exclude responses from experts with exceptionally bad 
performance is an attempt to direct the subsequent part 
of our analysis to identification mistakes that stem from 
the similarity between vocalizations and not so much 
from the observer's lack of previous contact with the 
species. In all cases where P > 0.025, we considered that 
the participant had a standard performance. 

As a second step in our study, we compared 
difficulty of identification across species (using the 
answers from participants with standard or exceptionally 
good performance). This comparison followed the same 
approach as the comparison between participants, with 
the difference that here, the number of coin tosses in the 
binomial distribution is the total number of times, N, that 
the quiz presented any expert with a vocalization of the 
focal species. Since quiz questions are randomly sampled, 
the value of N was slightly different among species (mean 
= 15.82, SD = 4.49). In the comparison among species, 
the two-tailed test based on the binomial distribution 
allowed us to identify which species are particularly 
difficult or particularly easy to identify. A value of P ≤ 
0.025 means it is highly unlikely that a species would 
present a result as extreme as, or more extreme than 
observed, under the null hypothesis that the probability 
of a correct identification equals 0.5.

Multinomial analysis

The binomial analyses described above looked only 
at whether quiz answers were right or wrong. In the 
multinomial part of our methods, however, we take 
advantage of the fact that, even though there is only 
one way to be right, there are many different ways of 
being wrong. At the most superficial level, we considered 
three kinds of wrong answers: blank answers, where users 
did not write anything or declared that they could not 
answer; off-site answers, where users named a species 
that does not occur in the study area; and plain-wrong 
answers, where users named a species which does occur 
in the study area but does not appear in the recording. 
From here on, in evaluating the frequency of confusions 
between species of the BDFFP area, we restrict our 
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analysis to right answers and plain-wrong answers 
alone. Furthermore, our quantification of confusions is 
symmetric, i.e. an answer where the expert writes the 
name of species b while listening to the voice of species 
a, counts as a confusion between a and b in the same 
way as an answer where the expert writes the name of 
species a while listening to the voice of species b. The 
number of confusions between species a and b is the sum 
of confusions in both directions.

Correct and plain-wrong answers by all experts 
with standard and exceptionally good performance were 
compiled in a triangular matrix with the same list of 
species in rows and columns. Cells along the diagonal 
of this triangular matrix show the number of times each 
species was correctly identified; cells in the sub-diagonal 
show the number of confusions between the respective 
row and column species. We sorted species along columns 
and rows according to taxonomic relatedness, following 
the classification by Remsen et al. (2014). Two species in 
consecutive positions on the matrix are separated by one 
unit of taxonomic distance and are taxonomically closer 
than two species separated by one or more positions in 
the list. To investigate whether it was easier to confuse 
taxonomically close than taxonomically distant species, 
we used a null model approach (Gotelli & Graves 
1996) where we compared the average distance between 
confused species in the observed confusion matrix 
(measured in positions in the ranking) to the distribution 
of average distances between confused species in a set of 
10,000 randomized, or “null”, confusion matrices. 

The null model approach tests the null hypothesis 
that relatedness between two species has no effect on 
the probability of confusion, i.e. the observed distance 
does not significantly depart from the distribution of 
random distances. The lower the observed distance 
relative to the distribution of “null” distances, the easier 
it is to reject the null hypotheses and the stronger the 
support for the idea that relatedness does influence 
confusion. The randomization algorithm that generates 
the null matrices has two key restrictions: 1) the 
number of wrong answers per species is kept constant 
across random matrices; and 2) the probability that 
each species is picked as a wrong answer is also kept 
constant across randomizations. The first restriction 
ensures that randomizations do not change the basic 
difficulty of correctly identifying each species. The 
second restriction is a conservative choice to ensure that 
if observers have some species bias when offering wrong 
answers, that bias won’t be lost in the null matrices. We 
experimented with other, less restrictive, algorithms and 
obtained qualitatively similar results.

To get a quantification and graphic presentation of 
the possibilities of confusion between species we generated 

a dendrogram based on the observed identification 
errors. To transform the number of confusions between 
two given species into a similarity measurement, we 
converted our confusion matrix into a matrix of Canberra 
distances between species (Lance and Williams 1967). 
The Canberra distance between species vectors x and y 
are given by: 
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The denominator NZ in the distance formula is 
the number of coordinate pairs (xi, yi) that are different 
from (0,0); within the sum, terms that are divided by 
zero are treated as zero. We used Canberra distances as 
implemented in the R stats package (R Development 
Core Team 2013), where multiplication by the n/NZ 
factor treats cases where both xi and yi are zero as missing 
data. This factoring is useful for ensuring that two species 
will not be deemed more similar only because they were 
never confused with a third species. With Canberra 
distances in hand, we represented the confusions among 
species in the form of a dendrogram, where our study 
species are positioned according to information in the 
confusion matrix of Figure 1. We drew the dendrogram 
using a Lance-Williams clustering analysis (Lance and 
Williams 1966) with the complete-linkage clustering 
method (farthest neighbors clustering). In the process 
of drawing our dendrogram, we tested different 
combinations of inter-specific distance metrics and 
clustering algorithms. None of the distance metrics 
commonly used to construct phylogenies was designed 
for the type of data in our confusion matrix, which has 
a large number of values that are equal or close to zero. 
In the end, we settled on the Canberra distance with a 
Lance-Williams clustering algorithm because this option 
gave us the simplest results, which could be easily related 
to the distribution of confusions observed in Figure 1. 
Our use of Canberra distances is also justified by the 
frequent use of this metric as a dissimilarity index on 
ranked lists and other strictly positive, discrete variables 
in computer science (Jurman et al. 2009). 
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RESULTS

We obtained the collaboration of 20 experts, each of 
whom took the bird identification quiz once. The joint 

results from the 20 tests returned 820 answers. Out of 
those, 469 (57%) were correct identifications, 179 (22 
%) were left blank, 128 (16%) were mistaken by species 
that occur in the study area and the remaining 44 answers 
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FIGURE 1. Triangular confusion matrix summarizing the quiz results, with correct answers on the diagonal and wrong answers to the left of the diagonal. 
Species are sorted in taxonomic order across rows and columns; codes on the left are abbreviations of the species names on the right. The color of each cell 
corresponds to the number of times the column species was identified as the corresponding row species: white stands for 0, light grey for 1, dark grey for 
values ≥ 2 and ≤ 10, and black for values > 10. Confusions between species of the same genus are outlined by a thin black line.
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(5%) were mistaken by other species that do not occur 
in the study area. Expert performances in the test varied 
substantially: seven (35%) had an exceptionally good 
performance, and four (20%) had an exceptionally poor 
performance, i.e. they answered correctly less often than 
would be expected in a binomial experiment with 0.5 
probability of guessing a question right. The remaining 
10 participants performed at the standard level (Table 1). 

Upon excluding answers from participants with 
an exceptionally poor performance, we summarized the 
results by species, as shown in Table 2. Evidently, some 
species are easier to identify than others: out of 41 species 
tested, 14 (34%) were identified correctly much more 
often than if the answer were determined by the toss of a 
fair coin (including Cymbilaimus lineatus, Thamnophilus 
murinus and Thamnophilus punctatus, which were always 
correctly identified by all observers). Only one species, 
Myrmelastes leucostigma, was so hard to identify that the 
experts got the species right less often than expected by 
the toss of a fair coin. For the 26 remaining species (64%) 
we found no evidence of difference between the outcome 
of the test and the results of a Binomial experiment with 
probability of success equal to 0.5. That is, the majority 

of species were neither extremely easy nor extremely hard 
to identify. 

The null model analysis of the confusion matrix 
(represented in Figure 1) shows that confusions were 
more frequent between taxonomically closer species 
than between relatively distant ones. The observed mean 
distance between confused species of 5.8 taxonomic 
units was lower than every single one of the 10,000 
simulated mean distances (Figure 2). The probability of 
obtaining a distance as low as the observed one is thus 
lower than 0.0001; we reject the null hypotheses with 
P < 0.0001. The two species that were most frequently 
confused were the antbirds Willisornis poecilonotus 
and Myrmotherula menetriesii with six confusions out 
of 38 times in which either species was heard (16%). 
The dendrogram generated from the Canberra distance 
matrix is consistent with the confusions found in the 
triangular matrix (Figure 3). Thirteen out of 18 (72%) 
branches on the dendrogram correspond to confusion 
points on the triangular matrix. Note how the antbirds 
Isleria guttata and Myrmotherula menetriesii stand out 
for being the pair of species separated by the shortest 
Canberra distance. 

TABLE 1. Bird-voice identification results for the 20 experts involved in this study, showing the number of blank answers (“Blank”), answers with 
a species that does not occur in the study area (“Off-site”), and answers with a wrong species from the study area (“Plain wrong”). The column 
“Correct” shows the number of correct answers. “P” indicates the binomial probability of obtaining a number of correct answers as extreme or more 
extreme than the observed, given the total number of trials and a probability of success equal to 0.5. Rows F, J, K, L, O, R, S, and T add to 40, and 
not to 41 trials, because they included the T. punctatus recording that was removed from the analyses.

Observer  Blank Off-site Plain wrong Correct P

Observer A* 23 0 8 10 0.0007
Observer B 5 3 9 24 0.1744
Observer C** 0 0 1 40 <0.0001
Observer D 11 0 4 26 0.0586
Observer E* 3 22 7 9 0.0002
Observer F 14 4 6 16 0.1340
Observer G* 25 0 9 7 <0.0001
Observer H 16 1 5 19 0.4372
Observer I* 22 1 8 10 0.0007
Observer J** 4 3 4 29 0.0032
Observer K** 4 1 2 33 <0.0001
Observer L** 0 1 1 38 <0.0001
Observer M** 5 0 7 29 0.0057
Observer N 8 0 10 23 0.2663
Observer O** 1 1 3 35 <0.0001
Observer P 11 1 5 24 0.1744
Observer Q 11 3 4 23 0.2663
Observer R 14 0 4 22 0.3179
Observer S** 0 0 13 27 0.0192
Observer T 1 4 11 24 0.1340

* Right answer probability significantly lower than 0.5 in a two-tailed test with P = 0.05.
** Right answer probability significantly higher than 0.5 in a two-tailed test with P = 0.05.
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TABLE 2. Summary of species-specific quiz results, showing the number of times each species was left in blank (“Blank”), mistaken for a species 
outside the study area (“Off-site”), or mistaken for a species from the study area (“Plain wrong”). Columns “Correct” and “n” show the number of 
correct answers and the number of times the species was heard by participants, respectively. “P” is the binomial probability of obtaining a number of 
correct answers as extreme, or more extreme than observed, given n attempts and a probability of success equal to 0.5.

Species Blank Off-site Plain wrong Correct n P

Euchrepomis spodioptila 3 1 1 12 17 0.0717
Cymbilaimus lineatus** 1 0 0 13 14 <0.0001
Frederickena viridis 1 0 4 14 19 0.0318
Thamnophilus murinus** 0 0 0 18 18 <0.0001
Thamnophilus punctatus**,*** 0 0 0 8 8 0.0039
Thamnomanes ardesiacus 6 0 0 16 22 0.0262
Thamnomanes caesius 7 0 3 12 22 0.4159
Isleria guttata 3 1 5 2 11 0.0327
Epinecrophylla gutturalis 4 2 1 10 17 0.3145
Myrmotherula brachyura 7 0 2 13 22 0.2617
Myrmotherula axillaris 0 0 6 8 14 0.3953
Myrmotherula longipennis 0 1 5 6 12 0.6128
Myrmotherula menetriesii 4 0 4 8 16 0.5982
Herpsilochmus dorsimaculatus 4 0 2 7 13 0.5000
Hypocnemis cantator 6 0 0 12 18 0.1189
Cercomacra cinerascens** 2 0 0 18 20 0.0002
Cercomacra tyrannina** 1 2 0 18 21 0.0007
Cercomacra laeta 1 0 2 8 11 0.1133
Sclateria naevia** 0 0 1 8 9 0.0195
Percnostola rufifrons** 0 0 2 15 17 0.0012
Myrmelastes leucostigma* 3 0 5 1 9 0.0195
Myrmeciza ferruginea** 6 0 0 18 24 0.0113
Myrmeciza atrothorax 6 0 1 8 15 0.5000
Myrmornis torquata** 0 2 1 10 13 0.0461
Pithys albifrons 6 0 4 6 16 0.2272
Gymnopithys rufigula** 2 1 2 17 22 0.0084
Hylophylax naevius 2 0 3 13 18 0.0481
Willisornis poecilinotus 5 1 5 11 22 0.5841
Certhiasomus stictolaemus 2 4 2 4 12 0.1208
Sittasomus griseicapillus** 0 0 3 18 21 0.0007
Deconychura longicauda 4 0 3 7 14 0.6047
Dendrocincla merula 2 0 5 7 14 0.6047
Dendrocincla fuliginosa 3 1 3 8 15 0.5000
Glyphorynchus spirurus** 1 0 0 14 15 <0.0001
Dendrexetastes rufigula 6 2 0 10 18 0.4072
Dendrocolaptes certhia** 1 1 2 13 17 0.0245
Dendrocolaptes picumnus 3 1 3 13 20 0.1316
Hylexetastes perrotii** 0 0 1 11 12 0.0032
Xiphorhynchus pardalotus 2 0 3 10 15 0.1508
Campylorhamphus procurvoides 0 0 1 2 3 0.5000
Lepidocolaptes albolineatus 2 1 5 5 13 0.2905

* Difficult species, with a number of correct answers lower than expected in a two-tailed test with  significance level P = 0.05.
** Easy species, with a number of correct answers higher than expected in a two-tailed test with  significance level P = 0.05.  
*** One of the T. punctatus vocalizations used in the study had its identification questioned by experts and was removed from results.
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FIGURE 2. Observed mean taxonomic distance between confused species (*) and histogram of the simulated mean distances between confused 
species in 10,000 randomized matrices. Values on the y-axis indicate the number of random matrices with a mean distance between confused species 
equal to the corresponding value in the x axis. 

FIGURE 3. Confusion dendrogram based on the Canberra distance between species and Lance-Williams clustering algorithm. The distance from a 
branching point and the outer edge of the graphic is proportional to how easily observers could tell the two branches apart. Branching points in the 
dark gray area separate species that were frequently confused, while branching points in the light gray area separate easily distinguishable species or 
groups of species. For simplicity, this figure omits species that were never mistaken by other species.
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DISCUSSION

Our results document the pervasiveness of errors in 
the identification of bird vocalizations, suggesting 
that such errors are inescapable and widespread in 
ornithological surveys (see also Lees et al. 2014). Even 
among identifications made by experts taking an on-line 
quiz, with the opportunity of listening to a fairly good 
recording while observing the respective sonogram, we 
found that more than 25% of identifications were wrong. 
Understanding how these errors happen is a key step 
towards lowering their frequency and improving our 
ability to obtain unbiased estimates of wildlife population 
parameters from bioacoustic data. We found considerable 
variation among experts in their ability to identify 
vocalizations, as well as substantial variation among 
species, in the frequency with which they were correctly 
identified. Although there are many possible errors, the 
probability of confusion between closely related species 
is higher than between relatively more distant ones, 
even when focusing on a phylogenetically restricted set 
of species. We acknowledge that our online quiz may 
have presented difficulties that are atypical of real-world 
processing of bioacoustics data, such as the relatively 
short time limit for answering questions, the lack of 
precise geographical information on where the recording 
was done, and the absence of environmental cues such 
as microhabitat and time of the day; nonetheless, these 
results are a motivation to improve ornithological training, 
to use sampling techniques that keep a permanent record 
of observations, and, most importantly, to incorporate 
the very real possibility of identification error in analyses 
of bioacoustics data.

Knowing that different experts have different 
backgrounds, it should come as no surprise that they 
performed very differently from each other in the 
identification quiz. Backgrounds varied in more than 
one way: while some experts learned the vocalizations in 
the field and probably relied mostly on sound for their 
quiz answers, others learned mostly in the lab, while 
processing audio recordings, and were more likely to take 
clues from the sonogram. There was also geographical 
variation in the backgrounds, with some experts having 
direct experience of listening to bird vocalizations from 
our study area and others having learnt mostly from 
experience in other parts of the Amazon. Experts from the 
latter group will be more likely to err by giving names of 
species that were not part of the study – especially when 
they are not informed about the geographic origin of the 
recordings. While it is unavoidable that different people 
will recall auditive memories differently, this problem 
could be minimized through the use of spaced-repetition 
learning (Donovan & Radosevich 1999) supported by 
digital tools (e.g. Cerqueira et al. 2013). Field practice will 

help observers memorize the voices of animals that they 
encounter most frequently; spaced-repetition learning, 
on the other hand, offers a means for adjusting the time 
studying each species, not according to the opportunity 
of encounter, but to how well the observer recalls one 
particular sound. 

The observed variation among species with regard 
to ease of identification helps to sort out which species 
can be reliably studied based on bioacoustic data and 
which certainly require caution. Among the species in 
our study, Cymbilaimus lineatus, Thamnophilus murinus 
and Thamnophilus punctatus stand out for never having 
been mistaken by other species. Why would it be so? T. 
murinus and C. lineatus are respectively the fourth and 
seventh most frequently detected species among the 
antbirds and woodcreepers in our autonomous recordings 
database. The T. punctatus' song ends with a very peculiar 
rhythmic pattern, which could be the reason why it is 
particularly hard to confuse with other songs. These three 
species summarize what we believe to be two main factors 
facilitating correct identifications: commonness, already 
reported to play a role in species detection by Farmer et 
al. (2012), and peculiarity of the vocalization. On the 
opposite end of the difficulty spectrum, Myrmelastes 
leucostigma, stood out for being the only species with 
evidence for a correct identification probability lower than 
0.5. M. leucostigma, along with the recurrently confused 
Willisornis poecilonotus and Myrmotherula menetriesii, may 
hold clues for understanding what makes a vocalization 
difficult to identify. Clearly, some species will be confused 
with each other because they sound alike—such as W. 
poecilinotus and M. menetriesii. However, the vocalization 
of M. leucostigma was confused with half a dozen species 
that don’t particularly sound like each other. We don’t 
know what caused these errors but wonder if there are 
acoustic traits that make a vocalization particularly 
difficult to memorize, regardless of its resemblance with 
other vocalizations. Besides the inherent difficulty of a 
sound and the obvious pairwise resemblance between 
species, it is also interesting to ask whether there are 
broader patterns that help one predict what are the most 
likely confusions. Both the dendrogram and the null 
model results support the reasonable idea that increasing 
phylogenetic relatedness increases the probability of 
confusion between species vocalizations. Our metric of 
relatedness is crude, but the final result is a contribution to 
understanding what types of misidentifications to expect 
as well as a motivation to take a detailed look at those 
exceptional situations where frequent confusion arises 
between unrelated species. This should be an incentive 
for keeping permanent records of bioacoustic surveys so 
that inevitable errors can be corrected and understood.

We see the work reported here as a first step 
towards understanding what are the most frequent 
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misidentifications between species in the bioacoustic 
surveys of central Amazon birds. This work could be 
usefully expanded to a larger set of species and an online 
quiz where participants are informed a priori about 
the geographical context of the questions. We did not 
anticipate this to be a problem, but in hindsight, we believe 
we might be able to learn more about the possibility of 
misidentification if experts had a basis for excluding species 
that do not belong in our sample. A complementary work 
that could throw further light on the causes for confusion 
would be to quantify distance between vocalizations based 
not on expert answers to the quiz but on quantitative 
measures of the frequency and tempo of vocalizations. It 
would be particularly interesting to confront results from 
the two approaches and find out in what circumstances 
two vocalizations that have similar measures may be easily 
distinguished by the observers as well as when observers 
fail to discriminate sounds that are measurably different.

Knowledge of which animal sounds are most difficult 
to identify will contribute towards decreasing false positive 
errors and improving the quality of bioacoustic data. It is 
important to keep in mind, however, that as much as one 
values data quality and observer training, identification 
errors will never go away permanently. Whether the 
observer is a human being or a machine, there will be a 
non-negligible possibility of error. Future work should 
aim not only at reducing errors, but also at incorporating 
the possibility of errors in the analysis of bioacoustics 
data. Consideration of identification errors is particularly 
important when estimating population parameters from 
surveys of animal sounds. A reduction in parameter 
estimation bias can go a long way in advancing scientific 
knowledge and supporting management decisions. We 
hope that our results help improve the quantification 
of uncertainty about Amazon bird identification, and 
ultimately advance knowledge of their distribution and 
population dynamics. 
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